Linear Algebra II

05/04/2016, Tuesday, 9:00-12:00
$1 \quad(3+(3+6+3)=15 \mathrm{pts})$

Consider the vector space \mathbb{R}^{5} with the inner product $\langle x, y\rangle=x^{T} y$.

1. Consider the vectors

$$
x_{1}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right]^{T}, \quad x_{2}=\left[\begin{array}{lllll}
1 & -1 & 1 & 0 & -1
\end{array}\right]^{T}, \quad x_{3}=\left[\begin{array}{lllll}
2 & 2 & 1 & -4 & 0
\end{array}\right]^{T} .
$$

Let $\theta_{i j}$ denote the angle between x_{i} and x_{j}. Find $\cos \theta_{12}, \cos \theta_{23}$, and $\cos \theta_{31}$.
2. Let

$$
A=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 1
\end{array}\right]
$$

(i) Find a basis for $N(A)$, the null space of A.
(ii) Apply Gram-Schmidt process to obtain an orthonormal basis for $N(A)$.
(iii) Find the closest element of $N(A)$ to the vector $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{T}$.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process, least squares

Solution:

(1a): Note that

$$
\begin{aligned}
& \left\langle x_{1}, x_{1}\right\rangle=4 \\
& \left\langle x_{1}, x_{2}\right\rangle=-1 \\
& \left\langle x_{1}, x_{3}\right\rangle=0 \\
& \left\langle x_{2}, x_{2}\right\rangle=4 \\
& \left\langle x_{2}, x_{3}\right\rangle=1 \\
& \left\langle x_{3}, x_{3}\right\rangle=25 .
\end{aligned}
$$

Then, we get

$$
\cos \theta_{12}=\frac{\left\langle x_{1}, x_{2}\right\rangle}{\left\|x_{1}\right\|\left\|x_{2}\right\|}=-\frac{1}{4} \quad \cos \theta_{23}=\frac{\left\langle x_{2}, x_{3}\right\rangle}{\left\|x_{2}\right\|\left\|x_{3}\right\|}=\frac{1}{10} \quad \cos \theta_{31}=\frac{\left\langle x_{3}, x_{1}\right\rangle}{\left\|x_{3}\right\|\left\|x_{1}\right\|}=0
$$

(1b):
(i): The null space of A is given by $N(A)=\{x \mid A x=0\}$. Note that

$$
\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=0
$$

leads to

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{3}-2 x_{5} \\
x_{3}-x_{5} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

This means that

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

is a basis for $N(A)$.
(ii): Note that

$$
\begin{aligned}
& \left\langle x_{1}, x_{1}\right\rangle=3 \\
& \left\langle x_{1}, x_{2}\right\rangle=0 \\
& \left\langle x_{1}, x_{3}\right\rangle=-3 \\
& \left\langle x_{2}, x_{2}\right\rangle=1 \\
& \left\langle x_{2}, x_{3}\right\rangle=0 \\
& \left\langle x_{3}, x_{3}\right\rangle=6 .
\end{aligned}
$$

where

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \quad x_{3}=\left[\begin{array}{r}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

By applying the Gram-Schmidt process, we obtain:

$$
\begin{aligned}
& u_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \\
& u_{2}=\frac{x_{2}-p_{1}}{\left\|x_{2}-p_{1}\right\|} \\
& p_{1}=\left\langle x_{2}, u_{1}\right\rangle \cdot u_{1} \\
& =0 \\
& x_{2}-p_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \\
& \left\|x_{2}-p_{1}\right\|^{2}=1 \\
& u_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \\
& u_{3}=\frac{x_{3}-p_{2}}{\left\|x_{3}-p_{2}\right\|} \\
& p_{2}=\left\langle x_{3}, u_{1}\right\rangle \cdot u_{1}+\left\langle x_{3}, u_{2}\right\rangle \cdot u_{2} \\
& =\frac{1}{3} \cdot-3 \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]=-\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \\
& x_{3}-p_{2}=\left[\begin{array}{r}
-2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
1
\end{array}\right] \\
& \left\|x_{3}-p_{2}\right\|^{2}=3 \\
& u_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

(iii): The closest element in $N(A)$ to $x=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$ can be found by projection:

$$
p=\left\langle x, u_{1}\right\rangle \cdot u_{1}+\left\langle x, u_{2}\right\rangle \cdot u_{2}+\left\langle x, u_{3}\right\rangle \cdot u_{3}
$$

Thus, we have

$$
p=\frac{1}{3} \cdot 3 \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{2}{3} \\
1 \\
\frac{4}{3} \\
1 \\
\frac{1}{3}
\end{array}\right] .
$$

Consider the matrix

$$
M=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right]
$$

where a, b, and c are real numbers.
a. Determine all values of (a, b, c) such that M is unitarily diagonalizable.
b. Find a unitary diagonalizer of M for each triple (a, b, c) found in (a).

REQUIRED KNOWLEDGE: unitarily diagonalization

SOLUTION:

(2a): A matrix is unitarily diagonalizable if and only if it is normal. Then, we need to find conditions on (a, b, c) such that

$$
M^{T} M=M M^{T}
$$

Note that

$$
M^{T} M=\left[\begin{array}{ccc}
0 & 0 & a \\
1 & 0 & b \\
0 & 1 & c
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right]=\left[\begin{array}{ccc}
a^{2} & a b & a c \\
a b & 1+b^{2} & b c \\
a c & b c & 1+c^{2}
\end{array}\right]
$$

and

$$
M M^{T}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
a & b & c
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & a \\
1 & 0 & b \\
0 & 1 & c
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & c \\
b & c & a^{2}+b^{2}+c^{2}
\end{array}\right]
$$

By looking at the diagonals, we obtain $a^{2}=1$ and $b=0$. By looking at the 31-elements, we see that $c=0$. These choices result in $M^{T} M=M M^{T}$. Therefore, M is unitarily diagonalizable if and only if

$$
a^{2}=1 \quad b=0 \quad c=0
$$

(2b): For the two possibilities found in (a), we have

$$
M_{-}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right] \quad \text { and } \quad M_{+}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

In order to diagonalize M_{-}, note that

$$
p_{-}(\lambda)=\operatorname{det}\left(M_{-}-\lambda I\right)=\operatorname{det}\left(\left[\begin{array}{rrr}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
-1 & 0 & -\lambda
\end{array}\right]\right)=-\left(\lambda^{3}+1\right)=-(\lambda+1)\left(\lambda^{2}-\lambda+1\right) .
$$

This results in the following eigenvalues:

$$
\lambda_{1}=-1 \quad \lambda_{2,3}=\frac{1 \pm \sqrt{3} i}{2}
$$

Note that

$$
\left[\begin{array}{rrr}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
-1 & 0 & -\lambda
\end{array}\right]\left[\begin{array}{c}
-\lambda \\
-\lambda^{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
\lambda^{3}+1 \\
0
\end{array}\right]
$$

Therefore, if λ is an eigenvalue of M_{-}then

$$
\left[\begin{array}{c}
-\lambda \\
-\lambda^{2} \\
1
\end{array}\right]
$$

is an eigenvector corresponding to λ. This leads to

$$
x_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{c}
\frac{-1-\sqrt{3} i}{2} \\
\frac{1-\sqrt{3} i}{2} \\
1
\end{array}\right] \quad x_{3}=\left[\begin{array}{c}
\frac{-1+\sqrt{3} i}{2} \\
\frac{1+\sqrt{3} i}{2} \\
1
\end{array}\right]
$$

for eigenvalues, respectively, λ_{1}, λ_{2}, and λ_{3}. Note that

$$
\left\|x_{1}\right\|=\left\|x_{2}\right\|=\left\|x_{3}\right\|=3
$$

Then, the unitary diagonalizer can be given by

$$
U_{-}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \frac{-1-\sqrt{3} i}{2} & \frac{-1+\sqrt{3} i}{2} \\
-1 & \frac{1-\sqrt{3} i}{2} & \frac{1+\sqrt{3} i}{2} \\
1 & 1 & 1
\end{array}\right]
$$

Indeed, it can be verified that

$$
\begin{aligned}
M_{-} U_{-} & =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{-1-\sqrt{3} i}{2} & \frac{-1+\sqrt{3} i}{2} \\
-1 & \frac{1-\sqrt{3} i}{2} & \frac{1+\sqrt{3} i}{2} \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \frac{-1-\sqrt{3} i}{2} & \frac{-1+\sqrt{3} i}{2} \\
-1 & \frac{1-\sqrt{3} i}{2} & \frac{1+\sqrt{3} i}{2} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{1+\sqrt{3} i}{2} \\
& \frac{1-\sqrt{3} i}{2}
\end{array}\right]=U_{-} D_{-}
\end{aligned}
$$

In order to diagonalize M_{+}, note that

$$
p_{+}(\lambda)=\operatorname{det}\left(M_{+}-\lambda I\right)=\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
1 & 0 & -\lambda
\end{array}\right]\right)=-\left(\lambda^{3}-1\right)=-(\lambda-1)\left(\lambda^{2}+\lambda+1\right)
$$

This results in the following eigenvalues:

$$
\lambda_{1}=1 \quad \lambda_{2,3}=\frac{-1 \pm \sqrt{3} i}{2}
$$

Note that

$$
\left[\begin{array}{rrr}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
1 & 0 & -\lambda
\end{array}\right]\left[\begin{array}{c}
\lambda \\
\lambda^{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\lambda^{3}+1 \\
0
\end{array}\right]
$$

Therefore, if λ is an eigenvalue of M_{+}then

$$
\left[\begin{array}{c}
\lambda \\
\lambda^{2} \\
1
\end{array}\right]
$$

is an eigenvector corresponding to λ. This leads to

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{c}
\frac{-1+\sqrt{3} i}{2} \\
\frac{-1-\sqrt{3} i}{2} \\
1
\end{array}\right] \quad x_{3}=\left[\begin{array}{c}
\frac{-1-\sqrt{3} i}{2} \\
\frac{-1+\sqrt{3} i}{2} \\
1
\end{array}\right]
$$

for eigenvalues, respectively, λ_{1}, λ_{2}, and λ_{3}. Note that

$$
\left\|x_{1}\right\|=\left\|x_{2}\right\|=\left\|x_{3}\right\|=3
$$

Then, the unitary diagonalizer can be given by

$$
U_{+}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \frac{-1+\sqrt{3} i}{2} & \frac{-1-\sqrt{3} i}{2} \\
1 & \frac{-1-\sqrt{3} i}{2} & \frac{-1+\sqrt{3} i}{2} \\
1 & 1 & 1
\end{array}\right]
$$

Indeed, it can be verified that

$$
\begin{aligned}
M_{+} U_{+} & =\frac{1}{\sqrt{3}}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{-1+\sqrt{3} i}{2} & \frac{-1-\sqrt{3} i}{2} \\
1 & \frac{-1-\sqrt{3} i}{2} & \frac{-1+\sqrt{3} i}{2} \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}
1 & \frac{-1+\sqrt{3} i}{2} & \frac{-1-\sqrt{3} i}{2} \\
1 & \frac{-1-\sqrt{3} i}{2} & \frac{-1+\sqrt{3} i}{2} \\
1 & 1 & \frac{-1+\sqrt{3} i}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & \frac{-1-\sqrt{3} i}{2}
\end{array}\right]=U_{+} D_{+}
\end{aligned}
$$

Let $A \in \mathbb{R}^{n \times n}$ be of the companion form

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right]
$$

a. Show that $A^{n}+a_{n-1} A^{n-1}+\cdots+a_{2} A^{2}+a_{1} A+a_{0} I=0$.
b. Show that if λ is an eigenvalue of A then $\left[\begin{array}{llllll}1 & \lambda & \lambda^{2} & \cdots & \lambda^{n-2} & \lambda^{n-1}\end{array}\right]^{T}$ is an eigenvector corresponding to λ.

REQUIRED KNOWLEDGE: Eigenvalues, eigenvectors, Cayley-Hamilton theorem

SOLUTION:

(3a):First, note that the characteristic polynomial of the matrix A is given by

$$
p_{A}(\lambda)=(-1)^{n}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{2} \lambda^{2}+a_{1} \lambda+a_{0}\right)
$$

since it is in the so-called companion form. Then, it follows from the Cayley-Hamilton theorem that

$$
p_{A}(A)=0
$$

equivalently

$$
A^{n}+a_{n-1} A^{n-1}+\cdots+a_{2} A^{2}+a_{1} A+a_{0} I=0
$$

(3b): Note that

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
\lambda \\
\lambda^{2} \\
\vdots \\
\lambda^{n-2} \\
\lambda^{n-1}
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
\lambda^{2} \\
\lambda^{3} \\
\vdots \\
\lambda^{n-1} \\
-a_{0}-a_{1} \lambda-\cdots-a_{n-2} \lambda^{n-2}-a_{n-1} \lambda^{n-1}
\end{array}\right]
$$

Since λ is an eigenvalue, we have that $p_{A}(\lambda)=0$. This leads to

$$
\lambda^{n}=-a_{n-1} \lambda^{n-1}-\cdots-a_{2} \lambda^{2}-a_{1} \lambda-a_{0}
$$

Then, we have

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
\lambda \\
\lambda^{2} \\
\vdots \\
\lambda^{n-2} \\
\lambda^{n-1}
\end{array}\right]=\left[\begin{array}{c}
\lambda \\
\lambda^{2} \\
\lambda^{3} \\
\vdots \\
\lambda^{n-1} \\
\lambda^{n}
\end{array}\right]=\lambda\left[\begin{array}{c}
1 \\
\lambda \\
\lambda^{2} \\
\vdots \\
\lambda^{n-2} \\
\lambda^{n-1}
\end{array}\right] .
$$

Consequently, $\left[\begin{array}{llllll}1 & \lambda & \lambda^{2} & \cdots & \lambda^{n-2} & \lambda^{n-1}\end{array}\right]^{T}$ is an eigenvector corresponding to λ.

Consider the function

$$
f(x, y, z)=a x^{2}+y^{2}+z^{2}-x y+y z-x z
$$

where $a \neq \frac{1}{3}$ is a real number.
a. Find all stationary points of f.
b. Determine all values of a such that the stationary point(s) are local minimum.

REQUIRED KNOWLEDGE: stanionary points, local minima, positive definite matrices

SOLUTION:

(4a): A stationary point $(\bar{x}, \bar{y}, \bar{z})$ satisfies

$$
\begin{aligned}
& 0=2 a \bar{x}-\bar{y}-\bar{z} \\
& 0=-\bar{x}+2 \bar{y}+\bar{z} \\
& 0=-\bar{x}+\bar{y}+2 \bar{z} .
\end{aligned}
$$

Equivalently, it satisfies

$$
\left[\begin{array}{rrr}
2 a & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right]=0
$$

Note that

$$
\operatorname{det}\left(\left[\begin{array}{rrr}
2 a & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]\right)=8 a+1+1-2-2 a-2=6 a-2 \neq 0
$$

since $a \neq \frac{1}{3}$. Therefore, the only solution to the above equation is the trivial solution $(\bar{x}, \bar{y}, \bar{z})=$ $(0,0,0)$. Thus, the only stationary point is the zero point.
(4b): We need to find out the Hessian matrix first:

$$
H(x, y, z)=\left[\begin{array}{ccc}
2 a & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]
$$

Since this matrix does not depend on the variables, we have

$$
H(0,0,0)=\left[\begin{array}{ccc}
2 a & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]
$$

In order the stationary point $(0,0,0)$ to be a local minimum, $H(0,0,0)$ needs to be a positive definite matrix. This can be checked by employing the principal minor test:

$$
\begin{aligned}
\operatorname{det}(2 a) & =2 a>0 \\
\operatorname{det}\left(\left[\begin{array}{cc}
2 a & -1 \\
-1 & 2
\end{array}\right]\right) & =4 a-1>0 \\
\operatorname{det}\left(\left[\begin{array}{ccc}
2 a & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]\right) & =6 a-2>0
\end{aligned}
$$

These inequalities, respectively, yield that $a>0, a>\frac{1}{4}$, and $a>\frac{1}{3}$. Hence, $H(0,0,0)$ is positive definite if and only if $a>\frac{1}{3}$. Consequently, $(0,0,0)$ is a local minimum if $a>\frac{1}{3}$.

Let

$$
M=\left[\begin{array}{rrr}
a & -b & -c \\
a & -b & c \\
a & b & -c \\
a & b & c
\end{array}\right]
$$

where a, b, and c real numbers with $a>b>c>0$.
a. Find a singular value decomposition of M.
b. Find the best rank 2 approximation of M.

REQUIRED KNOWLEDGE: singuar value decomposition, lower rank approximations

Solution:

(5a): Note that

$$
M^{T} M=\left[\begin{array}{rrrr}
a & a & a & a \\
-b & -b & b & b \\
-c & c & -c & c
\end{array}\right]\left[\begin{array}{rrr}
a & -b & -c \\
a & -b & c \\
a & b & -c \\
a & b & c
\end{array}\right]=\left[\begin{array}{ccc}
4 a^{2} & 0 & 0 \\
0 & 4 b^{2} & 0 \\
0 & 0 & 4 c^{2}
\end{array}\right] .
$$

Since $a>b>c$, we can conclude that

$$
\sigma_{1}=2 a, \quad \sigma_{2}=2 b, \quad \sigma_{3}=2 c,
$$

and $V=I$. This leads to

$$
u_{1}=\frac{1}{2 a} A v_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad u_{2}=\frac{1}{2 b} A v_{2}=\frac{1}{2}\left[\begin{array}{r}
-1 \\
-1 \\
1 \\
1
\end{array}\right], \quad u_{3}=\frac{1}{2 c} A v_{3}=\frac{1}{2}\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right] .
$$

To fid u_{4}, we need to solve

$$
\left[\begin{array}{rrrr}
a & a & a & a \\
-b & -b & b & b \\
-c & c & -c & c
\end{array}\right] w=0
$$

This results in

$$
w=\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

and hence we should take

$$
u_{4}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

Finally, we have the following singular value decomposition:

$$
\left[\begin{array}{rrr}
a & -b & -c \\
a & -b & c \\
a & b & -c \\
a & b & c
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 a & 0 & 0 \\
0 & 2 b & 0 \\
0 & 0 & 2 c \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

(5b): The best rank 2 approximation can be found as follows:

$$
\begin{aligned}
\frac{1}{2}\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 a & 0 & 0 \\
0 & 2 b & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & =\frac{1}{2}\left[\begin{array}{rrrr}
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 a & 0 & 0 \\
0 & 2 b & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{crr}
a & -b & 0 \\
a & -b & 0 \\
a & b & 0 \\
a & b & 0
\end{array}\right] .
\end{aligned}
$$

Consider the matrix

$$
M=\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

a. Find eigenvalues of M.
b. Is M diagonalizable? Why?
c. Put M into the Jordan canonical form.

REQUIRED KNOWLEDGE: eigenvalues/vectors, diagonalization, Jordan canonical form

SOLUTION:

(6a): Charateristic polynomial of M can be found as

$$
\begin{aligned}
\operatorname{det}(M-\lambda) & =\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 1 & 0 \\
-1 & 1-\lambda & 1 \\
1 & 0 & -\lambda
\end{array}\right]\right) \\
& =-\lambda(\lambda-2)(\lambda-1)+1-\lambda \\
& =-\lambda\left(\lambda^{2}-3 \lambda+2\right)-\lambda+1 \\
& =-\lambda^{3}+3 \lambda^{2}-3 \lambda+1=-(\lambda-1)^{3}
\end{aligned}
$$

Therefore, M has the eigenvalues $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$.
(6b): The matrix M is diagonalizable if and only if it has 3 linearly independent eigenvectors. To find the eigenvectors, we need to solve the equation $(M-I) x=0$. Note that the system of equations

$$
(M-I) x=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right] x=0
$$

is equivalent to that of

$$
\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] x=0
$$

Therefore, the general solution is of the form

$$
x=\left[\begin{array}{r}
a \\
-a \\
a
\end{array}\right]
$$

where a is a scalar. This means that we can find only one linearly dependent eigenvector for the zero eigenvalue. Consequently, M is not diagonalizable.
(6c): Since there is only one linearly independent eigenvector, Jordan canonical form consists of one block. Note that

$$
(M-I)^{2}=\left[\begin{array}{rrr}
0 & 1 & 1 \\
0 & -1 & -1 \\
0 & 1 & 1
\end{array}\right] \quad \text { and } \quad(M-I)^{3}=0
$$

Next, we solve

$$
(M-I)^{2} v=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]
$$

One possible solution is

$$
v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Note that

$$
(M-I) v=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let

$$
T=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

and note that

$$
\underbrace{\left[\begin{array}{rrr}
2 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]}_{T}=\underbrace{\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]}_{T} \underbrace{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}_{J} .
$$

